SMS:Feature Objects Types

From XMS Wiki
Revision as of 15:13, 30 July 2009 by Sramiah (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
Map Module
Map Data Set.png
Map
Feature Objects
Coverages
More
Map Module Interface
Map Display Options
Map Module Tools
Feature Objects Menu
Map Project Explorer

Feature objects in SMS have been patterned after Geographic Information Systems (GIS) objects and include points, nodes, arcs, and polygons. Feature objects can be grouped together into coverages. Each coverage defines a particular set of attributes that store information for the objects. Since feature objects are patterned after GIS objects, it is possible to import and export feature objects to files readable by GIS programs such as Arc/Info and ArcView.

The primary use of feature objects is generate high level conceptual representations of a site. The area included by the polygons defines the domain of the mesh, grid, or limit the extents of cross sections. Each polygon represents a material zone or element type. Special points can be identified in the interior of the domain as areas of particular interest. Boundary parameters such as flow and head values can also be assigned to points or arcs. Depending on the numerical model to be used, SMS either passes this conceptual representation to the model, or constructs finite element meshes, finite difference grids, or one-dimensional cross sections that a numerical model will use. Thus, the user can focus on a simplified, high level representation of the model and little or not tedious cell-by-cell editing is required. The conceptual model approach can be used to build models for any of the numeric models supported by the SMS interface.

Feature Object Types

File:Featureobjects.gif
Feature Objects

The definition of feature objects in SMS follows that used by typical GIS software that supports vector data. The basic object types are points, nodes, vertices, arcs, and polygons. The relationship between these objects is illustrated in the figure below.

Points

Points are XY locations that are not attached to an arc. Points have unique ids and can be assigned attributes such as a source or sink. Points are often used to refine a mesh in an area of interest. Points are also used when importing a set of XY locations for the purpose of creating arcs or polygons.

Arcs

Arcs are sequences of line segments or edges, which are grouped together as a single "polyline" entity. Arcs have unique ids and can be assigned attributes such as specified head. Arcs are grouped together to form polygons or are used independently to represent geometrical features such as ridges or channels. The two end points of an arc are called "nodes" and the intermediate points are called "vertices".

Nodes

Nodes define the beginning and ending XY locations of an arc. Nodes have unique ids and can be assigned attributes.

Vertices

Vertices are XY locations along arcs in between the beginning and ending nodes. They are used solely to define the geometry of the arcs. Vertices do not have ids or attributes.

Polygons

File:Polygons.gif
Polygon with Hole

Polygons are a group of connected arcs that form a closed loop. A polygon consists of one or more arcs. If two polygons are adjacent, the arc(s) forming the boundary between the polygons is shared (not duplicated). Polygons may not overlap. However, a polygon can have a hole(s) defined by having a set of closed arcs defining interior polygon(s). An example of a hole is shown in the figure below. In this case, four arcs define two polygons. Polygon A is made up of arcs 1, 2, 3 and 4, whereas polygon B is defined by a single arc (arc 2). For polygon A, arcs 1, 3, and 4 define the exterior boundary whereas arc 2 defines a hole.

Polygons have unique ids and can be assigned attributes. Polygons are used to represent material zones such as main channel, overbank flood plain, lakes, etc.

Coverages

Feature objects are grouped together into coverages. Each coverage represents a particular set of data. For example, one coverage can be used to define recharge zones, and another coverage can be used to define zones of hydraulic conductivity.

Conceptual Models

Coverages are grouped into conceptual models. Conceptual models may consist of multiple coverages. In simple cases like TABS (RMA2), an "RMA2" meshing coverage may be combined with an "Area property" coverage to define material zones. When converting an RMA2 coverage to a mesh, SMS allows the user to specify this option. For more complex conceptual models, such as those used for TUFLOW, a simulation entry in the tree includes links to the component coverages. A TUFLOW simulation may have coverages for HX links, cross section, boundary conditions and levies.

Related Links