GMS:2D Interpolation Options: Difference between revisions

From XMS Wiki
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
The [[GMS:Interpolation|interpolation]] options are selected using the Interpolation Options dialog accessed through the '''''Interp. Options''''' command in the ''Interpolation'' menu. Once a set of options is selected, those options are used for all subsequent interpolation commands. The items in the 2D Interpolation Options dialog are as follows:
The [[GMS:Interpolation|interpolation]] options are selected using the Interpolation Options dialog accessed through the '''''Interp. Options''''' command in the ''Interpolation'' menu. Once a set of options is selected, those options are used for all subsequent interpolation commands. The items in the 2D Interpolation Options dialog are as follows:


=== Active Data Set ===
=== Active Dataset ===
Interpolation is always performed using the [[GMS:Data Sets|active data set]] of the active scatter point set. The active data set is normally selected in the [[GMS:The GMS Screen|Project Explorer]]. The name of the current active data set is listed at the top of the 2D Interpolation Options dialog. The active data set can not be changed with this dialog.
Interpolation is always performed using the [[GMS:Data Sets|active dataset]] of the active scatter point set. The active dataset is normally selected in the [[GMS:The GMS Screen|Project Explorer]]. The name of the current active dataset is listed at the top of the 2D Interpolation Options dialog. The active dataset can not be changed with this dialog.


If the active data set is transient then more interpolation options are available. (see [[GMS:Steady State vs. Transient Interpolation|Steady State vs. Transient Interpolation]])
If the active dataset is transient then more interpolation options are available. (see [[GMS:Steady State vs. Transient Interpolation|Steady State vs. Transient Interpolation]])


=== Interpolation Method ===
=== Interpolation Method ===
Line 20: Line 20:


=== Log Interpolation ===
=== Log Interpolation ===
When interpolating chemical data, it is not uncommon to have a small "hot spot" somewhere in the interior of the data where the measured concentrations are many orders of magnitude higher than the majority of the other concentrations. In such cases, the large values dominate the interpolation process and details and variations in the low concentration zones are obliterated. One approach to dealing with such situations is to use log interpolation. If this option is selected, GMS takes the log of each data value in the active scatter point set prior to performing interpolation. By interpolating the log of the data set, small values are given more weight than otherwise. Once the interpolation is finished, GMS takes the anti-log (10<sup>x</sup>) of the interpolated data set values before assigning the data set to the target grid or mesh.
When interpolating chemical data, it is not uncommon to have a small "hot spot" somewhere in the interior of the data where the measured concentrations are many orders of magnitude higher than the majority of the other concentrations. In such cases, the large values dominate the interpolation process and details and variations in the low concentration zones are obliterated. One approach to dealing with such situations is to use log interpolation. If this option is selected, GMS takes the log of each data value in the active scatter point set prior to performing interpolation. By interpolating the log of the dataset, small values are given more weight than otherwise. Once the interpolation is finished, GMS takes the anti-log (10<sup>x</sup>) of the interpolated dataset values before assigning the dataset to the target grid or mesh.


Note that it is impossible to take the log of a zero or negative value. When the log interpolation option is turned on, a value must be entered by the user to assign to scatter points where the current data value is less than or equal to zero. Typically, a small positive number should be used.
Note that it is impossible to take the log of a zero or negative value. When the log interpolation option is turned on, a value must be entered by the user to assign to scatter points where the current data value is less than or equal to zero. Typically, a small positive number should be used.
Line 31: Line 31:


=== Truncation ===
=== Truncation ===
When interpolating a set of values, it is sometimes useful to limit the interpolated values to lie between a minimum and maximum value. For example, when interpolating contaminant concentrations, a negative value of concentration is meaningless. However, many interpolation schemes will produce negative values even if all of the scatter points have positive data values. This occurs in areas where the trend in the data is toward a zero value. The interpolation may extend the trend beyond a zero value into the negative range. In such cases it is useful to limit the minimum interpolated value to zero. Interpolated values can be limited to a given range by selecting the Truncate values option in the Interpolation Options dialog. The range can be user-defined or automatically set to the maximum and minimum values of the data set being interpolated.
When interpolating a set of values, it is sometimes useful to limit the interpolated values to lie between a minimum and maximum value. For example, when interpolating contaminant concentrations, a negative value of concentration is meaningless. However, many interpolation schemes will produce negative values even if all of the scatter points have positive data values. This occurs in areas where the trend in the data is toward a zero value. The interpolation may extend the trend beyond a zero value into the negative range. In such cases it is useful to limit the minimum interpolated value to zero. Interpolated values can be limited to a given range by selecting the Truncate values option in the Interpolation Options dialog. The range can be user-defined or automatically set to the maximum and minimum values of the dataset being interpolated.





Revision as of 15:20, 13 November 2012

The interpolation options are selected using the Interpolation Options dialog accessed through the Interp. Options command in the Interpolation menu. Once a set of options is selected, those options are used for all subsequent interpolation commands. The items in the 2D Interpolation Options dialog are as follows:

Active Dataset

Interpolation is always performed using the active dataset of the active scatter point set. The active dataset is normally selected in the Project Explorer. The name of the current active dataset is listed at the top of the 2D Interpolation Options dialog. The active dataset can not be changed with this dialog.

If the active dataset is transient then more interpolation options are available. (see Steady State vs. Transient Interpolation)

Interpolation Method

The following 2D interpolation methods are supported by GMS:

Log Interpolation

When interpolating chemical data, it is not uncommon to have a small "hot spot" somewhere in the interior of the data where the measured concentrations are many orders of magnitude higher than the majority of the other concentrations. In such cases, the large values dominate the interpolation process and details and variations in the low concentration zones are obliterated. One approach to dealing with such situations is to use log interpolation. If this option is selected, GMS takes the log of each data value in the active scatter point set prior to performing interpolation. By interpolating the log of the dataset, small values are given more weight than otherwise. Once the interpolation is finished, GMS takes the anti-log (10x) of the interpolated dataset values before assigning the dataset to the target grid or mesh.

Note that it is impossible to take the log of a zero or negative value. When the log interpolation option is turned on, a value must be entered by the user to assign to scatter points where the current data value is less than or equal to zero. Typically, a small positive number should be used.

Anisotropy

Sometimes the data associated with a scatter point set will have directional tendencies. The azimuth and horizontal anisotropy allow the user to take into account these tendencies.

Extrapolation

Although they are referred to as interpolation schemes, most of the schemes supported by GMS perform both interpolation and extrapolation. That is, they can estimate a value at points both inside and outside the convex hull of the scatter point set. Obviously, the interpolated values are more accurate than the extrapolated values. Nevertheless, it is often necessary to perform extrapolation. Some of the schemes, however, perform interpolation but cannot be used for extrapolation. These schemes include Linear and Clough-Tocher interpolation. Both of these schemes only interpolate within the convex hull of the scatter points. Interpolation points outside the convex hull are assigned the Default extrapolation value.

Truncation

When interpolating a set of values, it is sometimes useful to limit the interpolated values to lie between a minimum and maximum value. For example, when interpolating contaminant concentrations, a negative value of concentration is meaningless. However, many interpolation schemes will produce negative values even if all of the scatter points have positive data values. This occurs in areas where the trend in the data is toward a zero value. The interpolation may extend the trend beyond a zero value into the negative range. In such cases it is useful to limit the minimum interpolated value to zero. Interpolated values can be limited to a given range by selecting the Truncate values option in the Interpolation Options dialog. The range can be user-defined or automatically set to the maximum and minimum values of the dataset being interpolated.