GMS:MODFLOW Post-Processing Viewing Options: Difference between revisions
From XMS Wiki
Jump to navigationJump to search
(→Viewing the Printed Output File: corrected spelling of that) |
(typo) |
||
(8 intermediate revisions by one other user not shown) | |||
Line 38: | Line 38: | ||
=====Calibration Targets and Statistics===== | =====Calibration Targets and Statistics===== | ||
For objects with an observed flow, a [[GMS:Calibration Targets| | For objects with an observed flow, a [[GMS:Calibration Targets|calibration target]] can be plotted on the object. The calibration target provides a graphical representation of the calibration error. Calibration targets are described in section 14.5. The display of flow calibration targets is turned on by selecting the '''Display Options''' command in the ''Feature Objects'' menu when the local source/sink coverage is the active coverage. | ||
=====Flow Budget for Selected Cells===== | =====Flow Budget for Selected Cells===== | ||
Line 48: | Line 48: | ||
If a CCF file has been imported as described above, a vector plot can be generated to illustrate the flow field computed by MODFLOW. The CCF file contains flows through each of the cell walls in the grid, i.e., the flow from each cell to each of its six surrounding cells. | If a CCF file has been imported as described above, a vector plot can be generated to illustrate the flow field computed by MODFLOW. The CCF file contains flows through each of the cell walls in the grid, i.e., the flow from each cell to each of its six surrounding cells. | ||
Vectors are generated by right-clicking on the CCF file in the Project Explorer and selecting the '''CCF→Velocity Vectors''' command. The cell top and bottom elevations as well as the porosity are used when calculating the velocity vectors. Therefore, for GMS to compute the vectors, a MODFLOW simulation must exist in GMS. Although porosity is not an input to a MODFLOW model, the porosity can be specified per cell, using the cell properties dialog, whenever a MODFLOW simulation exists. | Vectors are generated by right-clicking on the CCF file [[File:CCF Dataset Active.svg|16 px]] in the Project Explorer and selecting the '''CCF→Velocity Vectors''' command. The cell top and bottom elevations as well as the porosity are used when calculating the velocity vectors. Therefore, for GMS to compute the vectors, a MODFLOW simulation must exist in GMS. Although porosity is not an input to a MODFLOW model, the porosity can be specified per cell, using the cell properties dialog, whenever a MODFLOW simulation exists. | ||
The vectors are computed by reading the CCF file to get the net flow through each grid cell face. Each component of the velocity vector is computed by dividing the flow through the cell face by the saturated area of the face multiplied by the porosity. For example, the I, J, K direction components of the vector are calculated as follows: | The vectors are computed by reading the CCF file to get the net flow through each grid cell face. Each component of the velocity vector is computed by dividing the flow through the cell face by the saturated area of the face multiplied by the porosity. For example, the ''I'', ''J'', ''K'' direction components of the vector are calculated as follows: | ||
<!--*<math> vector_{i} = \dfrac { flow_{i} }{ (saturated_{Area_{i}}) (porosity) } </math> | <!--*<math> vector_{i} = \dfrac { flow_{i} }{ (saturated_{Area_{i}}) (porosity) } </math> | ||
*<math> vector_{j} = \dfrac { flow_{j} }{ (saturated_{Area_{j}}) (porosity) } </math> | *<math> vector_{j} = \dfrac { flow_{j} }{ (saturated_{Area_{j}}) (porosity) } </math> | ||
Line 69: | Line 69: | ||
'''Prior to version 8.2.''' | '''Prior to version 8.2.''' | ||
To generate a vector dataset from the CCF file, right-click on the CCF dataset in the | To generate a vector dataset from the CCF file, right-click on the CCF dataset [[File:CCF Dataset Active.svg|16 px]] in the Project Explorer and select the '''Generate vectors''' command from the pop up menu. A flow vector is generated at each cell center by computing a vector sum of the flows through the six walls of the cell. The resulting vectors can be plotted by selecting the [[GMS:Vectors|''Vectors'']] option in the [[GMS:3D Grid Module|''3D Grid Display'' Options]] dialog. | ||
==Viewing the Printed Output File== | ==Viewing the Printed Output File== | ||
Line 76: | Line 76: | ||
GMS provides two ways to view the text files produced by MODFLOW and the other analysis codes: | GMS provides two ways to view the text files produced by MODFLOW and the other analysis codes: | ||
#When a solution is read into GMS, the text output files are placed into the data tree. Double-clicking on their file icons in the [[GMS:Project Explorer|Project Explorer]] will bring up the text files in a text editor. | #When a solution is read into GMS, the text output files are placed into the data tree. Double-clicking on their file icons [[File:External Text File Icon.svg|14 px]] in the [[GMS:Project Explorer|Project Explorer]] will bring up the text files in a text editor. | ||
#Any text file can be viewed by selecting the '''Edit File''' command in the ''File'' menu. A File Browser appears and the selected file is opened in a text editor. | #Any text file can be viewed by selecting the '''Edit File''' command in the ''File'' menu. A File Browser appears and the selected file is opened in a text editor. | ||
{{Navbox GMS}} | {{Navbox GMS}} | ||
[[Category:MODFLOW]] | [[Category:MODFLOW|Post]] | ||
[[Category:Equations|M]] | [[Category:Equations|M]] |